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Abstract

The Smart Surface 1 project aims at designing an
integrated micro-manipulator based on an array of mi-
cromodules connected with a 2D array topology network.
Each micromodule comprises a sensor, an actuator and
a processing unit. One of the aim of the processing unit
is to recognize the shape of the part that is put on top of
the smart surface. This recognition or more precisely this
differentiation is done through a distributed algorithm that
we call a criterion. The aim of this article is to present
the ECO framework, which is able to test exhaustively the
efficiency of different differentiation criteria, in term of
differentiation efficiency, memory and processing power
needed. The tests will show that ECO is of great help for
choosing the best criteria to implement inside our smart
surface.

Keywords: shape differentiation, distributed comput-
ing, MEMS.

1 Introduction

During an assembly process, it is necessary to feed
assembly line workstations with well-oriented and well-
positioned parts. These parts are often jumbled and they
need to be sorted and conveyed to the right workstation.
To do so, the operations to be performed on parts are the
following: identifying, sorting, orienting, positioning, feed-
ing, and assembling. Among the most promising solutions
to perform these tasks on microparts, is the combination
of micro-electro mechanical systems (MEMS) in order to
form an actuator arrays. However, if a single microactu-
ator is not powerful enough to move a micropart, several

1This work is funded by the French National Agency for Research, by
the Doubs departemental council and by the University of Franche-Comté.

microactuators working cooperatively might very well do
it. A MEMS sensor/actuator arrays with embedded intelli-
gence is referred as a smart surface.

The objective of the Smart Surface project is to design
such an integrated MEMS system which will be able to
identify, to sort, to orient and position microparts. This arti-
cle deals only with the identification part of the process: A
micropart is put on the Smart Surface which have to recog-
nize the part shape and give the proper orders to the control
system to move it on the right place. In fact, recognition
is not the proper term. Given a set of part, the Smart Sur-
face have to differentiate all the parts within the set. As
the processing power of the Smart Surface is embedded in
very limited space, this differentiation process has to be op-
timized both in term of memory used and processing power
needed. The differentiation is made by a distributed pro-
gram loaded in the Smart Surface. For the rest of the paper
we call this program a differentiation criterion. The aim
of the Exhaustive COmparison (ECO) framework which is
presented in this article is to test exhaustively, i.e. for all
kinds of possible part shapes, a set of criteria to choose the
most adapted ones. The main condition for choosing a cri-
terion is that it must be able to differentiate all the possible
parts, that is what we call total differentiation. The other
two remaining conditions are: using the less memory and
using the less computing power.

The rest of the paper is organized as follows. Section 2
details the Smart Surface project. Section 3 presents the
ECO framework, while the tests are performed on section 4.
Some related works to shape representation are presented
section 5 and they are followed by the conclusion and pre-
sentation of future works.

2 The Smart Surface Project

There have been numerous projects of MEMS actua-
tor arrays in the past and more precisely in the 1990’s.
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These pioneer researches have developed different types of
MEMS actuator arrays, based on actuators either pneumatic
[18, 9], servoed roller wheels [14, 15], magnetic [12] or
thermobimoph and electrostatic [22]. Some of these prelim-
inary studies use a sensorless manipulation scheme based
on the Goldberg’s algorithm [11] for parallel jaw grippers.
The jaw grippers are obtained with MEMS actuator arrays
by creating opposite field forces which then can orient and
move the parts. Bohringer et al. [2] have proposed a concept
called ”programmable force field” which is an extension of
the Goldberg’s algorithm. This manipulation scheme which
is well-adapted for jaw grippers has shown some limitations
when adapted to MEMS actuator arrays. For instance, the
absence of a command law can lead to uncertain behaviours
[17] or MEMS actuator arrays has to be programmed for
each different kind of parts. More recent research has been
conducted in order to include sensors and to add intelligence
to MEMS actuator arrays but it either fails to develop it at a
micro-scale [1] or to be fully integrated [10].

The objective of the Smart Surface project is to design
a distributed and integrated micro-manipulator based on an
array of micro-modules in order to realize an automated po-
sitioning and conveying surface. Each micro-module will
be composed of a micro-actuator, a micro-sensor and a
processing unit. The cooperation of these micro-modules
thanks to an integrated network will allow to recognize the
parts and to control micro-actuators in order to move and
position accurately the parts on the smart surface. The parts
are small, they cover a few numbers of micro-modules (e.g.
4× 4).

Figure 1 shows the Smart Surface. The rectangular holes
seen on the front-side are the air nozzles. Air-flow comes
through a micro-valve in the back-side of the device and
then passes through the nozzle. The advantage of this so-
lution is the micro-actuators, the most fragile part of the
surface, that are protected. The circle holes are used by the
micro-sensor to detect the presence or not of the part on the
surface.

The strength of our project is the multidisciplinary col-
laboration between six labs specialized in their field and
more than twenty researchers. We are responsible for the
information management inside the smart surface, i.e. dis-
tributed differentiation of the part and communication in-
frastructure.

.

3 The ECO framework

Before implementing the part differentiation algorithms
on the Smart Surface, we are interested to find out criteria
allowing high differentiates.

This section presents a framework for criteria compari-
son in differentiating parts, based on an exhaustive part gen-

Figure 1. An overview of our smart surface.
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Figure 2. Overview of the framework.

eration. The framework is presented in figure 2. It receives
as input a set of criteria, the maximum part size (a square)
and the number of parts to differentiate. The framework
exhaustively generates all the appropriate parts. It gener-
ates several comparison trees: differentiation tree, cost tree.
An example of question which the framework answers to
is: What criteria differentiate best three random parts not
greater than 3× 3? The constraints of the framework which
will be relaxed in future works are :

• Parts can be rotated only at 90◦.

• No error in sensors and communications.

• We work on family of parts. We define a family of
parts all the ideal parts which have the same image
(discrete representation) on the surface. For example,
the typographic letter L and L (with and sans serifs)
have the same image on the surface, because the serifs
are much smaller than the sensors.
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Figure 3. Global structure of our model.

The parts on the Smart Surface are supposed to be rep-
resented by square matrices of size 3 or 4. In order to find
criteria reaching 100% differentiation, all possible parts of
size P × P with P = 3 and P = 4 are considered. This set
of parts is used to generate groups of parts. These groups
are used to test the criteria or combinations of criteria which
reach total differentiation. Our method is divided into five
steps (see fig. 3):

• First, all the parts of size P × P are generated.

• Afterwards, the resulting set of parts is reduced by
eliminating translations, 90◦ rotations and mirrors (see
tab. 1), as detailed in Section 3.1.

• Afterwards, all the combinations of n parts from the
previously generated parts are generated (see tab. 1).

• Afterwards, all the combinations of CCi criteria are
generated. For example, if Ci = {A, S, P} is the set
of criteria, the generated combinations are CCi =

Table 1. The number of unique parts and the
number of generated groups of three parts.

Max
part
size

Number of
parts gener-
ated

Number of
unique parts
(T )

Number of groups

3× 3 512 35 C3
35 = 6545

4× 4 65536 1280 C3
1280 = 348706560
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Figure 4. Part generation.

{{A}, {S}, {P}, {AS}, {AP}, {SP}, {ASP}}.
This means that all the criteria are combined in order
to differentiate the parts. Several criteria have been
tested, presented in section 4.

• Finally, there is the differentiation phase, detailed in
section 3.2.

3.1 Generation of the parts

Figure 4 presents the steps used in the generation of all
the parts. A part on the P × P square may be represented
as a binary matrix, as shown in figure 5. In a P ×P square,
there are 2P×P parts. However, many of them are not con-
nex, i.e. in fact there are two parts instead of one. The con-
nexity checking is done with a research in depth.

Afterwards, its mask is generated. The mask is a matrix
generated from the initial matrix where the first columns
and first lines with only 0s are removed (see figure 5). This
step remove translated identical parts.

During the next step, masks are rotated 90◦, 180◦ and
270◦, each mask is mirrored. After each 2 by 2 comparison,
identical masks are removed such that only one mask of
same type remains.

The parts remaining after this process are unique com-
pared to translation, rotation of multiple of 90◦ and mirror-
ing. Let T be the total number of unique parts (see tab. 1).
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Figure 5. Part discretization.

3.2 Differentiation of the parts

For each criterion Cj and each group Gi of parts a dif-
ferentiation matrix D is generated, with D(i, j) = 1, if the
values of the criterion between the two parts i and j are
identical, otherwise it is 0.

DGi,Cj
(k, l) = 1,∀k, l ∈ P

⇔ Cj differentiates all P ∈ Gi
(1)

In the case of a combination of several criteria CCj the
union of the differentiation matrices is computed. If the
matrix D contains only 1 values, the parts are said to be
differentiated according to this combination of criteria.

DGi,CCj
= ∪k∈CCj

DGi,Ck

CCj ⊂ {C1, C2, ..., Cm}
(2)

The matrix D is upper triangular. A differentiation is said
to be total if the matrices are differentiated according to all
possible groups.

Fig. 6 is an example of the computation of a differentia-
tion matrix with G1 = {P1, P2, P3} for the combination of
criteria CC1 = {ASP}.

The major challenge is to find out a combination of cri-
teria which leads to a total differentiation, i.e. for any group
of parts, a differentiation of the parts using one combination
of our criteria is always achieved.

The following algorithm details this process: Let n be
the number of parts which are needed to be differentiated.
The framework generates all the groups of n parts. If T is
the total number of unique parts, there will be Cn

T groups.
The algorithm is:

1: for each CCi = subset of {C1, C2, ..., Cm} do
2: for each group Gi subset of n elements in P do
3: if CCi is a criterion then
4: build the differentiation matrix DGi,CCi

5: else
6: {CCi is a combination of criteria}
7: for each Cj in CCi do
8: build the differentiation matrix DGi,CCj

=⋃
DGi,Cj

9: end for
10: end if
11: compute the differentiation rate t

Value of associated 
criterion for each part

Let G1 a group of parts:

P1                   P2                  P3

Differentiation matrix of G1 according to the criteria SPA 
union between differentiation matrixes for S, for P and for A):       

P1 1 1

1

P1 P2 P3

P2

P3

Total differentiation

Differentiation matrix of G1
according to the criterion S 

1 1

0

P1 P2 P3

P1

P2

P3

Differentiation matrix of G1
according to the criterion P 

Differentiation matrix of G1
according to the criterion A 

1 1 1 0
1 1 1 0
1 0 1 0
0 0 0 0

1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

1 1 1 0
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0 0 0 0
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1 1

1
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P1

P2
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S P A

Figure 6. An example of a group differentia-
tion according to a combination of criteria.

12: end for
13: compute the average ta of all differentiation rates t
14: end for
15: build comparison tree

The usefulness of criteria is presented as a simplified tree
(path XY is the same as Y X) called comparison tree (see
fig. 9 in section 4.3). Each node has a value expressed as
percentage of differentiation using all the criteria of the path
from the root of the tree. Finally, a cost (execution time,
memory used etc.) is associated to each branch.

3.3 Memory costs

The smart surface has memory limited due to is micro-
scale integration. This section formalizes the memory
needed by all criteria.

First, the memory needed by one cell (micro-module)
using one criterion is computed. Each cell knows all the
models. Let n be the number of models (the parts in the set
which should be differentiated), e.g. n = 3. Let m(Ci, Pj)
be the memory needed (in bits) to store the value of the cri-
terion Ci of the model part Pj . Therefore, all the models
need M1 bits memory, with M1 =

∑N
j=1 m(Ci, Pj). When

a part P is on the smart surface, it is first constructed by
each cell. It occupies M2 = P × P bits, because the maxi-
mum size of a part is P by P cells. The value of a criterion
of the part P is M3 = m(Ci, P ). Section 4.3 gives some
practical values for M3. The sum of these values gives the
total memory needed by one cell for one criterion Ci:

m = M1 + M2 + M3 (3)
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Let CCj be the set of combinations of criteria that con-
duct to a total differentiation. The best set from memory
point of view is:

M = {ck/ck = minci⊂CCj M(ci)} (4)

The memory needed by the Smart Surface is X · M ,
where X is the number of cells of the Smart Surface.

3.4 Execution time

Differentiating the parts is done in a distributed manner
in several steps by each cell:

1: part reconstruction by each cell
2: repeat
3: criterion value computing (of the part on the Smart

Surface)
4: comparison with all the models
5: until not differentiation
6: move part (taking of the same decision)

The aim of the framework is to find the best criteria.
Hence, it is not involved in the image reconstruction and
the move part; besides it is identical to all the criteria and
depends on the distributed algorithm used, so it is not taken
into account.

Suppose CCi the best combination of criteria. The worst
case is when all the criteria included in CCi are needed to
recognize the part among the models.

Let t1(cj) be the execution time of the criterion cj . Prac-
tical execution times of criteria is given in section 4.3. The
total execution time to compute the value of all the criteria
is: T1 =

∑
cj⊂CCi

t1(cj).
The value of each criterion is a number. Comparing two

numbers is very fast, let t2 be the (constant) comparison
time. n is the number of parts to differentiate. The execu-
tion time of all the comparisons is: T2 =

∑
cj⊂CCi

nt2.
The total execution time is the sum of the two previous

times:
T =

∑
cj⊂CCi

(t1(cj) + nt2)
= nt2|CCi|+

∑
cj⊂CCi

t1(cj)
(5)

where |CCi| is the cardinality (number of elements) of
CCi.

4 Tests

The aim of our work is to differentiate relatively small
parts by finding a set of criteria. These parts are represented
by square matrices of order 3 or 4. All criteria are tested
in order to find criteria or combination of criteria reaching
total differentiation. These are called total differentiation
criteria. Among these criteria, the fastest execution time
and/or the lowest memory cost are selected.

4.1 Description of the criteria

The differentiation criteria must be simple and must be
easy to implement. The criteria can be classified as contour-
based methods or as region-based methods. For example,
the first criterion, P (the perimeter) which is the number of
cell frontiers between “1” and “0” (see fig. 7) is one of the
simplest criteria, is classified as a contour-based method.
The second criterion S is the area, classified as a region-
based method. It consists in counting all the “1” contained
in a part. In the following, the description and classification
of the criteria used in our approach are given.

Contour-based criteria:

• P : The number of 1 having at least one neighbor at 0.

• A: The number of 1 having at least three neighbors to
0 and forming a right angle.

Region-based criteria:

• S: The number of 1 of the part.

• L: The maximum length between 1 of the part.

• N : The sum of the number of bits that change between
two successive lines respectively columns.

• Z: The maximum length between all the 0 of part.

• D: The sum of 1 located on both diagonals.

• F : The sum of all Manhattan distances between 0.

• M : The sum of the number of bits that change.

• R: The sum of the number of V shape angles.

• I: The sum of the number of identical lines with the
number of identical columns.

• T : The product of all Manhattan distances between 0.

• Y : The product of all Manhattan distances between 1.

• E: The product of the number of bits that change be-
tween each two successive lines with the number of
bits that change between each two successive columns.

• K: The product of the number of bits that change
from: the first line with the other lines, the last line
with the other lines, the first column with the other
columns, the last column with the other columns.

• C: The sum of the number of V shape angles.

5



0 0 0 1

0 0 0 1

0 0 1 1

0 1 1 1

1

2

3

4

14

567

8

10

9

11

13

12

Figure 7. Perimeter of an object, equal to 14.

 0

 1

 2

 3

 4

 5

 1  2  3  4  5  6  7

P
er

ce
nt

ag
e 

of
 c

om
bi

na
tio

ns
 o

f c
rit

er
ia

 r
ea

ch
in

g 
10

0%
 d

iff
er

en
tia

tio
n

Combinations size of criteria

Figure 8. Size of combination reaching at
100%.

4.2 Selecting criteria reaching total dif-
ferentiation

Among all the combinations of criteria, only the com-
binations reaching total differentiation are considered. The
test show that the minimal combinations of criteria for ma-
trices of size 3× 3 are:
CCi = {{TM}, {TK}, {Y F}, {Y M}, {Y K}, {Y E}}
and for matrices of size 4× 4 are:
CCi = {{CFIDMRZ}, {CFILMRZ}}.

Fig. 8 presents the number of combination of criteria
reaching total differentiation function of the size of the com-
bination. For 3 × 3 matrices all combinations of size 2
are removed from the combinations of size 3. For example
(T,M) and (Y,E) reach 100%, therefore combinations ATM
and AYE have been removed because they provide no ad-
ditional differentiation. It’s the same for all combinations.

 1

 10

 1e-08  1e-07  1e-06

M
em

or
y 

co
st

 (
bi

t)

Execution time (sec)

 A

 C D

 E

 F

 I

 K

 L

 M

 N

 P

 R S

 T

 Y

 Z

 X

 TM
 TK

YK
 YM  YF

 TFM
 TFK

Figure 10. Memory cost according to execu-
tion times of criteria.

4.3 Memory costs and execution times of
the criteria reaching 100%

To sum up, for 3 × 3 matrices six combinations of two
criteria, among the criteria that we are defined, reach a total
differentiation. However, it is obvious that the binary rep-
resentation criterion, together with the grid based method
[21], is sufficient to differentiate the parts. Although it is
very costly in memory because the whole matrix is saved,
i.e. 9 bits, 90◦ rotation matrices and mirrors matrices must
also be saved. This gives 72 bits. Fig. 9 shows an example
of memory consumption for all combination of the criteria
T, Y, F,M, K,X .

Fig. 9 demonstrates that the combination TM reaches
total differentiation with 37 bits, less than the binary repre-
sentation. Execution times necessary for each criterion are
measured. In fig. 10 the scatter of points of memory cost is
presented function of execution time of criteria. There are
several combinations of criteria that reach total differentia-
tion with lower execution time and memory cost than binary
representation.

5 Related work

Several methods of shape representation exist in the liter-
ature. They are divided into two categories: contour-based
methods and region-based methods. Contour-based meth-
ods are widely used. But generally, for complex images, the
contour is not enough to describe the image content, there-
fore region-based methods are better.

5.1 Contour-based approaches

In the contour-based approach, the pixels of the contour
are considered.
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Figure 9. Memory cost.

5.1.1 Fourier descriptors

This approach is divided into two steps:

1. The image is defined by a one-dimensional function
called shape signature, which is nothing else than a
compact representation of the image [13]. Many meth-
ods to calculate the signature have been developed.
The most common shape signatures are: centroid dis-
tance [24, 25], chordLength signature [26] and area
function.

2. Once the shape signature has been calculated, a Fourier
transform is applied [7, 5]. It results in coefficients
called Fourier descriptors of the shape. These descrip-
tors represent the shape of the object in the frequency
domain. The Fourier transform is invariant against
translation, scale, rotation and their starting point.

5.1.2 Freeman code

Freeman coding consists in browsing the borders of the
shape with elementary moves from a starting point and cod-
ing the movement [6, 3].

Freeman code is sensitive to rotation because Freeman
code depends on the starting point. To reduce this depen-
dence, the resulting number has to be the minimal. The
Freeman code is invariant to translation. It is also invariant
to a rotation of 90◦ for the 4-connectivity and 45◦ for the
8-connectivity [8, 23].

Fourier descriptors and Freeman code are widely used
for big pictures where the outline of the image differs no-
ticeably from the inside of the images (parts). In our study
these methods are not very interesting given that we are
working on tiny images where the contour is equal or nearly
equal to the surface.

5.2 Region-based approaches

In region-based methods, all the pixels within a shape
are taken into account to obtain the shape representation.

5.2.1 Grid based

In this method [20], a fixed-length grid of cells on the image
is draw. Going along our grid from top to bottom and from
left to right, each cell that is wholly or partly covered by
the form is affected with the value 1, and others cells with
0 [21]. This produces a binary number, which is the rep-
resentation of our shape. The difference between two parts
is given by an XOR between their binary representations.
Such a binary representation is very sensitive to rotation,
translation and dilatation, that is it requires a prestandard-
ization.

5.2.2 Invariant moments

In this method [19, 16, 4], the invariant moments are used
to represent the image. There are a set of seven descriptors
called Husont invariants computed by normalizing central
moments of order three. They are invariant to object scale,
translation and orientation. They are used as input vectors
for the classification method. There are several classifica-
tion methods, among them neural networks are the most
widely used because of their fault tolerance, their ability of
classification and their generalizability. The invariant mo-
ments are widely used in three dimension models or large
images that need to be compacted. It is not very useful to
apply this method in our case because the images are very
small.
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6 Conclusions and future works

In this article we presented an exhaustive framework al-
lowing to identify the criteria reaching a total differentiation
among a set of criteria. Our tests on groups of 3 parts show
that some combinations of two criteria for matrices of size
3×3 reached a total differentiation. We have considered the
memory cost and execution time of the criteria and combi-
nations of criteria that achieve a total differentiation. We
have made a comparative study of these results with the ex-
ecution time and cost memory of the grid based method.
We have deduced that some combinations of criteria reach
a total differentiation with a smaller execution time and a
lower cost memory than the grid based method.

One of the idea of our future work is to reduce the con-
straint of the 90◦ rotation by allowing a more flexible rota-
tion (for instance a step-by-step rotation with a 10◦ step).
Another idea is to develop a distributed algorithm for vari-
ous criteria in order to implement them in the Smart Surface
and compare them in term of execution time. Finally, we
plan to implement the ECO framework on a G80 GPU with
CUDA, in order to speed up the comparison.
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